Computation of CWAVE parameters

CWAVE parameters is a concept described in the paper Schulz-Stellenfleth et al. [2007]. CWAVE parameters are based on the SAR image x-spectrum.

The spectral information of the normalized x-spectrum is decomposed according to orthonormal functions Hij defined as tensor products of Gegenbauer polynomial Gi(αk(kx,ky)) and harmonic Fj(αϕ(kx,ky)) functions defined in the azimuth ky and range ky wave-number space.

This yields to the general formulation of CWAVE parameters Cij:

Cij=kx,kyP(kx,ky)Hij(kx,ky)dkxdky,

with i[1,nk] and j[1,nϕ]. In this study nk=4 and nϕ=5.

The orthonormal functions are defined such as:

Hij(kx,ky)=Gi(αk)Fj(αϕ)η(kx,ky),

where η writes as:

η(kx,ky)=(2(a2kx2+2a1kx4+ky2)(kx2+ky2)(a2kx2+a1kx4+ky2)(logkmaxlogkmin))2,

with

γ=2a1=(γ2γ4)(γ2kmin2kmax2)a2=kmax2γ4kmin2kmax2γ2kmin2

In this study, kmin=2π/600 and kmax=2π/25 to take benefit of the improved resolution and size of Sentinel-1 SAR images.

Gi(αk(kx,ky)) writes :

Gi(λ)(x)=1i(2x(i+λ1)Gi1(λ)(x)(i+2λ2)Gi2(λ)(x)), for i2.

Otherwise:

C0(λ)(x)=1C1(λ)(x)=2λx

In this study λ is set to 3/2. Fj(αϕ(kx,ky)) writes :

Fj(x)=2/πsin(jx), for n>1, when i is evenFj(x)=2/πsin((j1)x), for n>1, when i is odd.

otherwise:

F1(x)=2/π

Finally αk and αϕ write:

αk=2log(a1kx4+a2kx2+ky2)log(kmin)log(kmax)log(kmin)1αϕ=arctan(kx,ky).