Bibliography
European Space Agency. TOPSAR processing. https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/topsar-processing - Accessed on January 2024.
European Space Agency. Processing level-1. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1 - Accessed on January 2024.
Klaus Hasselmann and Susanne Hasselmann. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. Journal of Geophysical Research: Oceans, 96(C6):10713–10729, 1991.
René Garello, Bertrand Chapron, and Harald Johnsen. Wave and wind retrieval from sar images of the ocean. Ocean Modelling, 56(11-12):682–699, 2001.
Harald E Krogstad. A simple derivation of hasselmann's nonlinear ocean-synthetic aperture radar transform. Journal of Geophysical Research: Oceans, 97(C2):2421–2425, 1992.
Xiao-Ming Li, Susanne Lehner, and Thomas Bruns. Ocean wave integral parameter measurements using envisat asar wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1):155–174, 2010.
Huimin Li, Bertrand Chapron, Alexis Mouche, and Justin E Stopa. A new ocean SAR cross-spectral parameter: definition and directional property using the global sentinel-1 measurements. Journal of Geophysical Research: Oceans, 124(3):1566–1577, 2019.
Andrey Pleskachevsky, Sven Jacobsen, Björn Tings, and Egbert Schwarz. Estimation of sea state from sentinel-1 synthetic aperture radar imagery for maritime situation awareness. International journal of remote sensing, 40(11):4104–4142, 2019.
Björn Tings Andrey Pleskachevsky, Sven Jacobsen and Egbert Schwarz. Estimation of sea state from sentinel-1 synthetic aperture radar imagery for maritime situation awareness. International Journal of Remote Sensing, 40(11):4104–4142, 2019. doi:10.1080/01431161.2018.1558377.
Andrey Pleskachevsky, Björn Tings, Stefan Wiehle, James Imber, and Sven Jacobsen. Multiparametric sea state fields from synthetic aperture radar for maritime situational awareness. Remote Sensing of Environment, 280:113200, 2022.
Johannes Schulz-Stellenfleth, Thomas König, and Susanne Lehner. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research: Oceans, 2007.
Brandon Quach, Yannik Glaser, Justin Edward Stopa, Alexis Aurélien Mouche, and Peter Sadowski. Deep learning for predicting significant wave height from synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 59(3):1859–1867, 2021. doi:10.1109/TGRS.2020.3003839.